电子版pdf《物理学中的数学方法》王怀玉著_现代物理基础丛书55

+++++++++
①本站的扒谱扒带一般只涉及扒音轨,如果是涉及到旋律音高等全面的扒带扒谱会特别给出MIDI文件!
②本站资源自助高速下载!部分资源无需注册登录(部分需要会标明登录,注册登录后(点击这里)需要去个人中心充值:点击这里)点击立即支付后支付宝扫二维码支付,等待页面跳转显示下载链接(手机端需手动刷新页面,推荐电脑访问)! +++++++++++++++
请尽快抓紧及时下载,24小时后访问失效!有事文章底部留言或请取得QQ联系:联系我们
本站所有电子书内页预览(按网址中的编号):点击查看

本文链接网址:
https://ebook.zhensi.org/wuli-93.html

文件大小:032.27 MB

电子版pdf《物理学中的数学方法》王怀玉著_现代物理基础丛书55

下载地址:

此付款无需注册!付款后等候跳转显示!您需要先支付 25元 才能查看此处内容!立即支付

物理学中的数学方法

作者:王怀玉出版社:科学出版社有限责任公司出版时间:2022年08月

http://img3m4.ddimg.cn/56/4/11341453124-1_u_1.jpg

开 本:128开
纸 张:胶版纸
包 装:平装胶订
是否套装:否
国际标准书号ISBN:9787030367884
丛书名:现代物理基础丛书55
所属分类:
图书>自然科学>数学>数学理论图书>自然科学>物理学>理论物理学

内容简介

本书介绍了物理学科研工作所需的数学知识和相应的数学基础,包括10章内容,分别是变分法、希尔伯特空间、二阶线性常微分方程、贝塞尔函数、狄拉克δ函数、格林函数、范数、积分方程、数论在物理逆问题中的应用和任意维空间的基本方程。本书内容与本科阶段已经学过的数理方法衔接,并尽可能地反映*的科研成果。本书对概念的说明与公式的推导力求详尽全面,内容叙述清楚,便于读者学习。各章末尾大量的习题有助于读者巩固和扩展正文中学到的知识内容。

本书可作为大学物理系和理工科各专业的本科高年级学生和研究生的教材或参考书,也可供高校教师和科研人员参考。

 

作者简介

王怀玉(1941年6月-2019年9月13日),陕西绥德人。1974年10月加入中国共产党,1965年9月参加工作,新疆大学政治教育系政治教育专业毕业,大学学历,教授。曾任新疆维吾尔自治区人民代表大会常务委员会副主任。
目  录
前言
第1章 变分法
1.1 泛函和泛函的极值问题
1.1.1 泛函的概念
1.1.2 泛函的极值问题
1.2 泛函的变分和最简单情形的欧拉方程
1.2.1 泛函的变分
1.2.2 最简单情形的欧拉方程
1.3 多个函数和多个自变量的情形
1.3.1 多个函数
1.3.2 多个自变量
1.4 泛函的条件极值问题
1.4.1 等周问题
1.4.2 测地线问题
1.5 自然边界条件
1.6 变分原理
1.6.1 经典力学的变分原理
1.6.2 量子力学的变分原理
1.7 变分法在物理学中的应用
1.7.1 在经典物理中的应用
1.7.2 在量子力学中的应用
习题
附录1A 函数的极值问题
参考文献
第2章 希尔伯特空间
2.1 线性空间、内积空间和希尔伯特空间
2.1.1 线性空间
2.1.2 内积空间
2.1.3 希尔伯特空间
2.2 内积空间中的算子
2.2.1 算子与伴随算子
2.2.2 自伴算子
2.2.3 非齐次线性代数方程组有解的择一定理
2.3 完备的正交归一函数集合
2.3.1 收敛的类别
2.3.2 函数集合的完备性
2.3.3 N维数域空间和希尔伯特函数空间
2.3.4 正交多项式
2.4 魏尔斯特拉斯定理与多项式逼近
2.4.1 魏尔斯特拉斯定理
2.4.2 多项式逼近
习题
附录2A 数e不是一个有理数的证明
参考文献
第3章 二阶线性常微分方程
3.1 二阶线性常微分方程的一般理论
3.1.1 解的存在唯一性定理
3.1.2 齐次方程解的结构
3.1.3 非齐次方程的解
3.2 施图姆-刘维尔型方程的特征值问题
3.2.1 施图姆-刘维尔型方程的形式
3.2.2 施图姆-刘维尔方程的边界条件
3.2.3 施图姆-刘维尔特征值问题
3.2.4 施图姆-刘维尔特征值问题举例
3.3 施图姆-刘维尔型方程的多项式解集
3.3.1 核函数和权函数的可能的形式
3.3.2 多项式的级数表达式和微商表示
3.3.3 母函数关系
3.3.4 正交的施图姆-刘维尔多项式解集的完备性定理
3.3.5 正交多项式解集在数值积分中的应用
3.4 与多项式的施图姆-刘维尔系统有关的方程和函数
3.4.1 拉盖尔函数
3.4.2 勒让德函数
3.4.3 切比雪夫函数
3.4.4 厄米函数
3.5 切比雪夫双曲函数
3.5.1 微分方程的建立
3.5.2 微分方程的求解
3.6 二阶常微分方程的复变函数理论
3.6.1 齐次线性方程组的解
3.6.2 二阶常微分方程
3.7 非自伴的二阶常微分方程
3.7.1 常微分方程的伴随方程
3.7.2 施图姆-刘维尔算子
3.7.3 非自伴二阶常微分方程的完备集
3.8 非齐次方程有解的条件
习题
附录3A 初值问题(3.1.4)的解的存在唯一性的证明
附录3B 二重求和中变量的代换
附录3C 关于施图姆-刘维尔理论向狄拉克型方程的推广
参考文献
第4章 贝塞尔函数
4.1 贝塞尔方程
4.1.1 贝塞尔方程及其解
4.1.2 第一类和第二类贝塞尔函数
4.2 贝塞尔函数的基本性质
4.2.1 贝塞尔函数的递推公式
4.2.2 贝塞尔函数的渐近式
4.2.3 贝塞尔函数的零点
4.2.4 朗斯基行列式
4.3 整数阶贝塞尔函数
4.3.1 奇偶性和特殊点的值
4.3.2 整数阶贝塞尔函数的母函数
4.4 半奇数阶贝塞尔函数
4.5 第三类贝塞尔函数和球贝塞尔函数
4.5.1 第三类贝塞尔函数
4.5.2 球贝塞尔函数
4.6 虚变量(或变形)贝塞尔函数
4.6.1 第一类和第二类变形的贝塞尔函数
4.6.2 整数阶变形贝塞尔函数
4.6.3 半奇数阶变形贝塞尔函数
4.7 变量为实数的贝塞尔函数
4.7.1 贝塞尔方程的特征值问题
4.7.2 特征函数族的性质
4.7.3 球贝塞尔方程的特征值问题
习题
附录4A г(z)函数的导数与ψ(z)函数
附录4B 第二类贝塞尔函数表达式
参考文献
第5章 狄拉克δ函数
5.1 δ函数的定义与性质
5.1.1 δ函数的定义
5.1.2 δ函数是一个广义函数
5.1.3 δ函数的傅里叶变换和拉普拉斯变换
5.1.4 广义函数的导数和积分
5.1.5 δ函数中的定值是个复数的情况
5.2 δ函数视为普通函数的弱收敛极限
5.2.1 普通函数的弱收敛的几种形式
5.2.2 证明式(5.2.7a)的弱收敛极限是δ函数
5.2.3 证明式(5.2.9b)的弱收敛极限是δ函数
5.2.4 证明式(5.2.11)的弱收敛极限是δ函数
5.2.5 应用举例
5.3 多维空间中的δ函数
5.3.1 直角坐标系
5.3.2 直角坐标系到曲线坐标系的变换
5.4 δ函数的广义傅里叶展开
习题
参考文献
第6章 格林函数
6.1 格林函数的基本理论
6.1.1 格林函数的定义
6.1.2 格林函数的作用和性质
6.1.3 格林函数的求解方法
6.1.4 格林函数的物理意义
6.2 拉普拉斯算子的基本解
6.2.1 三维情况
6.2.2 二维情况
6.2.3 一维情况
6.3 阻尼振子的格林函数
6.3.1 齐次方程的解
6.3.2 求解格林函数
6.3.3 方程的通解
6.3.4 无阻尼的情况
6.3.5 边界条件对格林函数的影响
6.4 二阶常微分方程的格林函数
6.4.1 格林函数的对称性
6.4.2 二阶微分方程边值问题的解
6.4.3 广义格林函数
6.4.4 求解二阶微分方程边值问题的实例
6.5 高维空间的格林函数
6.5.1 二阶微分方程与格林函数
6.5.2 二维格林函数求解实例
6.5.3 三维格林函数求解实例
6.5.4 光的小孔衍射
6.5.5 三维空间中粒子散射的问题
6.6 镜像法求解格林函数
6.6.1 镜像法的基本理论
6.6.2 二维空间实例
6.6.3 三维空间实例
6.7 一阶微分方程的格林函数
6.7.1 非齐次方程边值问题
6.7.2 齐次方程边值问题
6.7.3 非齐次方程与格林函数
6.7.4 边值问题的通解
6.8 非自伴微分方程的格林函数
6.8.1 伴随格林函数
6.8.2 非齐次微分方程的解
习题
参考文献
第7章 范数
7.1 巴拿赫空间
7.1.1 巴拿赫空间
7.1.2 赫尔德不等式
7.1.3 闵可夫斯基不等式
7.2 向量范数
7.2.1 向量范数
7.2.2 向量范数的等价性
7.3 矩阵范数
7.3.1 矩阵范数
7.3.2 矩阵的谱范数和谱半径
7.3.3 矩阵测度
7.4 算子范数
7.4.1 算子的范数
7.4.2 伴随算子
7.4.3 投影算子
7.5 全连续算子
7.5.1 线性积分变换用有限秩线性积分变换逼近
7.5.2 全连续算子
习题
参考文献
第8章 积分方程
8.1 积分方程的基础理论
8.1.1 积分方程的定义和分类
8.1.2 积分方程与微分方程的关系
8.1.3 关于齐次积分方程的理论
8.2 线性积分方程的迭代技术
8.2.1 弗雷德霍姆线性积分方程
8.2.2 沃尔泰拉线性积分方程
8.3 非线性方程的迭代技术
8.3.1 迭代步骤
8.3.2 利普希茨条件
8.3.3 利用收缩的概念
8.3.4 弹簧的非谐振动
8.4 退化核的弗雷德霍姆线性积分方程
8.4.1 可分核
8.4.2 有限秩核
8.4.3 核按特征系的展开
8.5 卷积型积分方程的求解
8.5.1 弗雷德霍姆卷积型积分方程
8.5.2 沃尔泰拉卷积型积分方程
8.6 多项式类型的积分方程
8.6.1 只含多项式的弗雷德霍姆积分方程的解法
8.6.2 母函数法
习题
参考文献
第9章 数论在物理逆问题中的应用
9.1 陈-莫比乌斯变换
9.1.1 引言
9.1.2 莫比乌斯变换
9.1.3 陈-莫比乌斯变换
9.2 晶体中声子态密度的逆问题
9.2.1 逆变换公式
9.2.2 低温近似
9.2.3 高温近似
9.3 晶体内原子间相互作用势的逆问题
9.3.1 一维情况
9.3.2 二维情况
9.3.3 三维情况
9.4 加性莫比乌斯变换及其应用
9.4.1 函数的加性莫比乌斯变换及其应用
9.4.2 数列的加性莫比乌斯变换及其应用
9.5 与表面和界面有关的对势反演问题
9.5.1 孤立原子与半无限大晶体内原子的对势
9.5.2 晶体表面原子弛豫
9.5.3 界面原子间作用势的逆问题
习题
附录9A 黎曼ξ函数的数值
附录9B 倒易系数的计算
参考文献
第10章 任意维空间的基本方程
10.1 任意维欧几里得空间
10.1.1 直角坐标系与球坐标系
10.1.2 梯度、散度和拉普拉斯算子
10.2 拉普拉斯方程和亥姆霍兹方程的格林函数
10.2.1 拉普拉斯方程的格林函数
10.2.2 亥姆霍兹方程的格林函数
10.3 有心势下的径向方程
10.3.1 高维空间有心势下的径向方程
10.3.2 亥姆霍兹方程
10.3.3 无限深球方势阱
10.3.4 有限深球方势阱
10.3.5 库仑势
10.3.6 谐振子势
10.3.7 两项负幂次分子势
10.3.8 正负幂次分子势
10.3.9 指数衰减吸引势
10.3.10 径向方程具有解析解的条件
10.4 角向方程的解
10.4.1 四维空间
10.4.2 五维空间
10.4.3 N维空间
10.4.4 总角动量的线性无关分量
10.5 赝球坐标系
10.5.1 四维空间赝球坐标系
10.5.2 拉普拉斯方程的解
10.5.3 五维和六维空间
10.6 非欧几里得空间
10.6.1 度规张量
10.6.2 五维闵可夫斯基空间和四维德西特空间
习题
附录10A 超几何方程与超几何函数
参考文献
外国人名英汉对照表
索引

Related Posts:

Tagged , . Bookmark the permalink.

发表评论