吴文俊全集《数学机械化卷 Ⅱ》电子版pdf

+++++++++
①本站的扒谱扒带一般只涉及扒音轨,如果是涉及到旋律音高等全面的扒带扒谱会特别给出MIDI文件!
②本站资源自助高速下载!部分资源无需注册登录(部分需要会标明登录,注册登录后(点击这里)需要去个人中心充值:点击这里)点击立即支付后支付宝扫二维码支付,等待页面跳转显示下载链接(手机端需手动刷新页面,推荐电脑访问)! +++++++++++++++
请尽快抓紧及时下载,24小时后访问失效!有事文章底部留言或请取得QQ联系:联系我们
本站所有电子书内页预览(按网址中的编号):点击查看

本文链接网址:
https://ebook.zhensi.org/shuxue-69.html

文件大小:109.73 MB 吴文俊全集-数学机械化卷 Ⅱ

下载地址:

此付款无需注册!付款后等候跳转显示!您需要先支付 30元 才能查看此处内容!立即支付

吴文俊全集(数学机械化卷Ⅱ)(精)
作者:吴文俊出版社:龙门书局出版时间:2019年05月

http://img3m4.ddimg.cn/52/11/11023833994-1_u_1.jpg

开 本:16开
纸 张:胶版纸
包 装:平装-胶订
是否套装:否
国际标准书号ISBN:9787508855516
所属分类:
图书>自然科学>数学>应用数学

内容简介
本卷收录了吴文俊的Mechanical Theorem Proving in Geometries:Basic Principles 一书。 书中论述初等几何机器证明的基本原理, 证明了奠基于各种公理系统的各种初等几何, 只需相当于乘法交换律的某一公理成立, 大都可以机械化。 因此在理论上, 这些几何的定理证明可以借肋于计算机来实施。

可以机械化的几何包括了多种有序或无序的常用几何、投影几何、非欧几何与圆几何等。 全书共分六章。 前两章是关于几何机械化的预备知识, 集中介绍了常用几何; 后四章致力于几何的机械化问题。 第3 章为几何定理证明的机械化与Hilbert 机械化定理, 第4, 5 章分别为(常用)无序几何的机械化定理和(常用)有序几何的机械化定理, 第6 章阐述各种几何的机械化定理。 本书可供数学工作者和计算机科学工作者以及高等院校有关专业的师生参考。
目  录
Author’s note to the English-language edition
1 Desarguesian geometry and the Desarguesian number system
1.1 Hilbert’s axiom system of ordinary geometry
1.2 The axiom of infinity and Desargues’ axioms
1.3 Rational points in a Desarguesian plane
1.4 The Desarguesian number system and rational number subsystem
1.5 The Desarguesian number system on a line
1.6 The Desarguesian number system associated with a Desarguesian plane
1.7 The coordinate system of Desarguesian plane geometry
20rthogonal geometry, metric geometry and ordinary geometry
2.1 The Pascalian axiom and commutative axiom of multiplication- (unordered) Pascalian geometry
2.20 rthogonal axioms and (unordered) orthogonal geometry
2.3 The orthogonal coordinate system of (unordered) orthogonal geometry
2.4 (Unordered) metric geometry
2.5 The axioms of order and ordered metric geometry
2.6 Ordinary geometry and its subordinate geometries
3 Mechanization of theorem proving in geometry and Hilbert’s mechanization theorem
3.1 Comments on Euclidean proof method
3.2 The standardization of coordinate representation of geometric concepts
3.3 The mechanization of theorem proving and Hilbert’s mechanization theorem about pure point of intersection theorems in Pascalian geometry
3.4 Examples for Hilbert’s mechanical method
3.5 Proof of Hilbert’s mechanization theorem
4 The mechanization theorem of (ordinary) unordered geometry
4.1 Introduction
4.2 Factorization of polynomials
4.3 Well-ordering of polynomial sets
4.4 A constructive theory of algebraic varieties -irreducible ascending sets and irreducible algebraic varieties
4.5 A constructive theory of algebraic varieties -irreducible decomposition of algebraic varieties
4.6 A constructive theory of algebraic varieties -the notion of dimension and the dimension theorem
4.7 Proof of the mechanization theorem of unordered geometry
4.8 Examples for the mechanical method of unordered geometry
5 Mechanization theorems of (ordinary) ordered geometries
5.1 Introduction
5.2 Tarski’s theorem and Seidenberg’s method
5.3 Examples for the mechanical method of ordered geometries
6 Mechanization theorems of various geometries
6.1 Introduction
6.2 The mechanization of theorem proving in projective geometry
6.3 The mechanization of theorem proving in Bolyai-Lobachevsky’s hyperbolic non-Euclidean geometry
6.4 The mechanization of theorem proving in Riemann’s elliptic non-Euclidean geometry
6.5 The mechanization of theorem proving in two circle geometries
6.6 The mechanization of formula proving with transcendental functions
References
Subject index

Related Posts:

Tagged . Bookmark the permalink.

发表评论